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ABSTRACT 

 

The American University in Cairo 

Regulatory Networks in Non-Small Cell Lung Cancer: Connecting 
Differentially Expressed Genes, miRNAs, and lncRNAs 

By: Jasmine Omran 

Under the Supervision of: Dr. Hassan Azzazy 

Non-small cell lung cancer (NSCLC) is the most prevalent class of lung cancer and the most 
common cancer worldwide. NSCLC accounts for 85% of total lung cancer cases and leads to the 
most cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) and micro RNAs 
(miRNAs) are gene regulatory elements that play crucial roles in cancer biology such as cancer 
cell growth and metastasis. Understanding the gene regulatory elements that influence cancer 
biology is critical for diagnostic and therapeutic purposes. A systems approach can help simulate 
interactions between these elements. In this study 110 microarray samples from NSCLC patients 
were analyzed by computational methods to identify differentially expressed genes in two tissue 
types: NSCLC and normal lung tissue. Identified differentially expressed genes were 
functionally clustered and annotated with their miRNA and lncRNA targets using miRTarBase 
and starBase, respectively. Regulatory networks were created to suggest an interplay between 
these miRNAs, lncRNAs, and differentially expressed genes. This approach led to the 
identification of 108 differentially expressed genes. Innumerable miRNAs target the 
differentially expressed genes but 66 miRNAs were identified by literature mining and strong 
evidence validation methods to identify miRNA and differentially expressed gene targets. The 
filtered miRNAs were also paired with seven of the most common NSCLC-associated lncRNAs. 
Based on the findings of this computational study and other studies in literature, connections of 
differentially expressed genes, miRNAs, and lncRNAs were suggested. TGFBR3 and HHIP, 
tumor suppressor genes, and CAV1, an oncogene, were functionally related to carcinogenesis 
and cancer cell metastasis, respectively and were related to cell signaling and extracellular matrix 
genes. This study suggests that MALAT1, PVT1, and GAS5 are lncRNAs that regulate gene 
expression via miRNA targeting. Since miRNAs, and lncRNAs are instrumental gene regulatory 
factors in determining NSCLC diagnosis and prognosis, these regulatory pathways can lead to 
novel approaches in cancer therapy. Therefore, these networks propose mechanisms of actions to 
further study miRNAs and lncRNAs suggesting a crosstalk between miRNAs, lncRNAs, and 
differentially expressed genes.  
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CHAPTER 1: Introduction 

1.1. NSCLC 

1.1.1. Epidemiology 

Lung cancer encompasses two main categories: small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC). NSCLC is the more prevalent of the lung cancers responsible 

for 85% of those diagnosed with lung cancer. NSCLC encompass adenocarcinoma, squamous 

cell carcinoma, and large cell carcinoma. Lung cancer is the prevailing cause of cancer-related 

deaths worldwide for both males and females and is more common in the older generation (65 

years or older). More specifically, lung cancer is the most common cause of cancer related-

deaths in males while it is the second most common cause of cancer related-deaths in females. In 

both sexes, 19% of all cancer deaths are attributed to lung cancer alone totaling to 1.6 million 

deaths (CDC). According to the American Cancer Society, 1 out of 4 cancer-related deaths are 

due to lung cancer. More deaths result from lung cancer every year than of colon, breast, and 

prostate combined (American Cancer Society). 
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Figure 1. Sub-groups of Lung Cancer (Lilly Oncology).  
Small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are two dominant 
classifications within lung cancer. NSCLC accounts for 85% of lung cancer diagnoses and 
encompasses adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Figure was 
reproduced with permission from reference 30; see appendix. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Most Common Cancers Worldwide in 2012 (CDC).  
In both males and females, lung cancer is the most common classified cancer globally (CDC). 
Figure was reproduced with permission from reference 7; see appendix. 
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Figure 3. Most Common Causes of Cancer Death Worldwide in 2012 (CDC).   
In both females and males, 19% of all cancer-related deaths are due to lung cancer accounting 
for 1.6 million deaths (CDC). Figure was reproduced with permission from reference 7; see 
appendix. 

1.1.2. Statistics 

According to the American Cancer Society, 158,080 Americans are supposed to die in 

2016 which will be responsible for 27% of all cancer deaths. Also, as indicated by the American 

Lung Association and the American Cancer Society, an expected 224,390 Americans are 

expected to be diagnosed with lung cancer in 2016 accounting for 14% of all cancer diagnoses. 

Despite these statistics, the incidence rate for both men and women has been declining. One in 

14 men and one in 17 women are likely to develop lung cancer during their lifetime (American 

Cancer Society). 

1.1.3. NSCLC in Egypt 

Lung cancer accounts for 5-7% of cancers in Egypt (National Cancer Registry Program). 

The incidence rate in Egypt is expected to drastically increase by a 3-time fold in both males and 
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females until the year 2050. The expected number of cases are expected to reach over 140,000 

and 160,000 for women and men, respectively until the year 2050 according to the National 

Cancer Registry Program of Egypt (NCRP) (Ibrahim, Khaled et al. 2014). 

 

Figure 4. Incidence rates of the most frequently observed cancers in Egypt.  
In Egypt, lung cancer is ranked third and fourth amongst males and fifth amongst both genders 
(NCRP) (Ibrahim, Khaled et al. 2014). Figure was reproduced with permission from reference 
21; see appendix.  
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Figure 5. Estimated number of cancer cases in Egypt 2013-2015.  
According to the National Cancer Registry Program (NCRP) in Egypt, the incidence rate is 
expected to drastically increase by 3-time fold in both males and females until the year 2050 
genders. The expected number of cases are expected to reach over 140,000 and 160,000 for 
women and men, respectively until the year 2050 (Ibrahim, Khaled et al. 2014). Figure was 
reproduced with permission from reference 21; see appendix. 
 

1.1.4. Risks and Protective Factors of NSCLC 

Some of the risks that lead to NSCLC are cigarette smoke, second hand smoking, alcohol 

consumption, and occupational exposure to carcinogens such as radon and asbestos (American 

Cancer Society). Long-term air pollution exposure, previous radiation therapy to the lungs, and 

family history of lung cancer are irreversible risk factors (American Cancer Society). The 

heredity inheritance of the TP53 gene and other chromosome markers may also lead to lung 

cancer (American Cancer Society). Any combination of these risk factors increases the 

likelihood of lung cancer. Some protective factors of lung cancer include exercise, specifically 
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leisure-time physical activity and fruits and vegetables that are rich in antioxidants, even among 

heavy smokers (Molina, Yang, Cassivi, Schild, & Adjei, 2008). 

1.1.5. Smoking and NSCLC 

NSCLC is more common amongst former smokers (60%) than current smokers (25%) 

(American Lung Association). Male and female smokers are 23 and 13 times, respectively, more 

probably to develop lung cancer than those who never smoked (American Lung Association). 

Nonsmokers have a 20 to 30% chance of developing lung cancer if disclosed to second-hand 

smoke (American Lung Association). Smoking leads to 90% and 80% of male and female lung 

cancer related-deaths, respectively (American Lung Association). 
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Figure 6. Smoking, a cause of cancer-related deaths.   
Smoking is the dominant element of cancer related deaths followed by other pulmonary diseases 
and heart disease (National Cancer Institute). Figure was reproduced with permission from 
reference 38; see appendix. 

1.1.6. Types of NSCLC 

Adenocarcinoma, squamous cell carcinoma, and large cell carcinoma are three primary 

divisions in NSCLC. Adenocarcinoma effects the outer area of lung and accounts for 40% of 

lung cancers; it is slower to spread and is considered the most common form of cancer in 

smokers or former smokers but it is also the most popular form of cancer in nonsmokers. 

Squamous cell carcinoma, flat cells that line the airways, effects the center of the lung and 

bronchi and accounts for 25-30% of lung cancers and is connected to a smoking history. Large 

cell (undifferentiated) carcinoma effects any part of the lung and accounts for 10-15% of lung 

cancers. Large cell carcinoma grows and spreads fast (American Cancer Society). 
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1.1.7. NSCLC Signs and Symptoms 

A worsening cough, a new onset of wheezing, coughing up blood or rust-colored phlegm, 

shortness of breath, chest pain, weight loss, loss of appetite, recurring respiratory conditions are 

among the most common symptoms that appear with lung cancer patients (American Cancer 

Society). Usually lung cancer is pronounced at a later disease phase or when the disease spreads 

to distant body parts.  As the lung malignancy metastasizes to the brain or spinal cord, bone pain 

and nervous system changes may occur. If the lung cancer spreads to the liver this may result in 

jaundice. Symptoms increase and appear as the cancer progresses and proliferates. Some cancers 

may even lead to syndromes like: Horner syndrome, superior vena cava syndrome, and 

paraneoplastic syndromes. Lung cancer screening is recommended for patients that are 55-74 

years old, in fairly good health condition, and are currently smoking or formerly smoked in the 

past 15 years (American Cancer Society). Lung cancer screening is also recommended for 

patients with a “30 pack-year smoking history” meaning the patient smoked one cigarette pack 

per day for 30 years (American Cancer Society).  

1.1.8. NSCLC Diagnosis and Treatments 

The current diagnostic procedure includes a medical history and physical exam, chest x-

ray, chest CT scan with infusion or contrast material, and biopsy (American Cancer Society). 

Lung cancer is diagnosed microscopically by observing a collection of lung cells (American 

Cancer Society). Current treatments include surgery, radiation therapy, combination 

chemotherapy such as Cisplatin and Paclitaxel (Taxol), targeted therapy such as Bevacizumab 

and (Avastin) and Ramucirumab (Cyramza), and immunotherapy like Nivolumab (Opdivo) 

(American Cancer Society). Treatment of NSCLC depends on the stage of the cancer (American 

Cancer Society). 
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1.1.9. NSCLC Stages 

The stage of the disease is according to the size of the tumor and progression of the 

spreading of the cancer. Stage 0 is considered the non-invasive stage and the cancer cells are 

found in the airway lining and have not spread any further. Stage 1A is the beginning of invasive 

stages; the tumor size is	≤3 cm and the tumor has grown through the airway lining into deep lung 

tissue. Stage 1B, the abnormal mass size is ≥3cm and the tumor has reached the primary airway. 

Stage 2A, the tumor is ≤3 cm and the tumor has proliferated to nearby lymph glands on the same 

side of the chest. Two types of stage 2B progression are present. Stage 2B1, the tumor is	≥5 cm 

and the tumor has advanced to the lymph nodes. Stage 2B2, the tumor is	≥7 cm and the tumor 

has not penetrated the lymphatic structure or distant structures. Stage 3A, the abnormal mass 

varies in size and the cancer spreads to the lymph nodes on the same side of the lung tumor and 

to nearby structures such as the chest wall and other parts of the thoracic cavity. Stage 3B, the 

tumor can be any size and the cancer spreads to the lymph glands above the chest or to the other 

side of the chest and nearby structures. Stage 4, the tumor can be any size and the malignancy 

spreads to other body parts such as the brain, bone, liver, and adrenal glands (American Cancer 

Society). 

1.2. Gene Regulation 

1.2.1. miRNAs 

miRNAs are 22 nucleotides in length; these small non-coding pieces of RNA were 

overlooked until their discovery in 1993. miRNAs play different roles in various cancers 

including post transcriptional gene regulation, cell-to-cell communication, and cell cycle 

regulation. miRNAs are known gene regulatory factors that can function as tumor suppressors 
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and oncogenes. The abnormal miRNA expression levels signify an anomalous state and can be 

used to target cancer regulatory pathways and provide insight into disease progression. This can 

lead to the uncovering of original biomarkers and curative breakthroughs. Hence, the study of 

miRNAs and the fluctuation of miRNA levels is a growing field for disease progression, 

prognosis, diagnosis, and therapy. 

1.2.1a. miRNA Biogenesis 

Diseased states of miRNA targets may result from alterations in the processing of 

miRNAs; hence, it is important to understand the biogenesis of miRNAs. miRNA biogenesis 

begins in the nucleus where primary miRNAs (pri-miRNA) are processed by Drosha into pre-

miRNAs before leaving the nucleus. In the nucleus, Drosha, an RNase III enzyme removes the 

tails of the pri-miRNA, consisting of 1- 4 kilobases, which leads to the formation of a stem loop 

called precursor miRNA (Pre-miRNA) to construct the 22 nucleotide non-coding sequence 

(Bartel 2004). Pre-miRNAs are transported from the nucleus via Exportin 5. Once out of the 

nucleus, the pre-miRNA is further prepared by Dicer in the cytoplasm. Dicer removes the stem 

loop from the pre-miRNA producing a mature miRNA. The mature miRNA can be primed into 

the Argonaute protein in the RNA-induced Silencing Complex also known as RISC (Bartel 

2004). This RISC complex in turn degrades mRNA and or represses gene expression. This 

further proves the ability of miRNAs to regulate gene expression post transcription. 
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Figure 7. miRNA Biogenesis overview.  
Primary miRNA (pri-miRNA) transcribed by pol II or pol III must be processed by Drosha 
before it is exported from the nucleus. After processing takes place pri-miRNA becomes 
Precursor miRNA (Pre-miRNA). Pre-miRNA is transported from the cytoplasm to nucleus via 
Exportin 5 and is further refined by Dicer to produce a mature micro RNA (miRNA). Mature 
miRNA can be armed into the Argonaute protein containing RNA-induced silencing complex 
(RISC). This RISC complex consecutively degrades mRNA and represses gene expression 
(Rothschild, 2013). Figure was reproduced with permission from reference 42; see appendix. 

1.2.1b. miRNA Functions 

miRNAs have various functions including post-transcriptional gene regulation, cell-to-

cell communication, and cell cycle regulation all of which are important to understand disease 

progression. miRNAs create related cell networks and loop mechanisms to regulate many target 

cells simultaneously (Gurtan and Sharp 2013). This proves the ability of miRNAs to reach 

multiple targets which further confirms the gene regulatory capabilities of miRNAs. A recent 
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study found that “miRNA transfer can fine-tune gene expression during generation of the 

immune response and increase the complexity of communication between immune cells” (Chen, 

Liang et al. 2012).  Cell communication is a key factor which can manipulate the cell 

environment and produce analogous cell responses that can alter gene expression and lead to the 

activation or repression of corresponding molecular pathways. miRNAs can also have hormone 

like affects in terms of reaching and manipulating close and far away neighbors which further 

promotes the capability of miRNAs to regulate genes. Thus, the lack of cell-to-cell 

communication can lead to diseased states and can promote cancer development. Most often 

miRNAs are studied by observing the expression levels of miRNAs in altered states. This 

approach can pose difficulties due to the genetic diversity of tumors and constant mutations that 

arise from cancer (Chen, Liang et al. 2012). Since miRNAs can mediate the cell-to-cell 

communication further studies should focus on targeting the altered cellular mechanisms to be 

help discover biomarkers and develop therapeutics. 

 miRNAs not only a critical factor in cell communication but they also take part in cell 

growth and reproduction. Shifts in cell cycle checkpoints can lead to alterations in cell cycle 

progression, cell differentiation, and programmed cell death. Diseased states can lead to over-

expression or under-expression of miRNAs. Downregulation of miRNAs can result from 

genomic loss, alterations of genomic histone acetylation, variations in methylation, and 

repression of oncogenic and/or tumor suppressor transcription factors (Jansson and Lund 2012).  

Upregulation of miRNAs can result from loss of epigenetic markers (Jansson and Lund 2012). 

Upregulated miRNAs are functionally classified as oncogenes while downregulated miRNAs are 

functionally classified as tumor suppressors (Jansson and Lund 2012). For instance, in non-small 

cell lung cancer miRNA-17 and miRNA-200b are upregulated while miRNA-181 is 
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downregulated (Nadal, Truini et al. 2015) (Markou 2015). Hence, miRNA-17 and miRNA-200b 

act as oncogenes while miRNA-181 acts as a tumor suppressor.  

1.2.1c. Examples of miRNAs in NSCLC 

miRNAs from tissue and blood samples are signature factors for diagnosis, prognosis, 

and therapy. There are many examples of miRNAs that are associated with NSCLC. Novel 

biomarkers of NSCLC including downregulated miRNAs have been cited such as: miR-520h, 

miR-34b, and miR-448.  Novel biomarkers of NSCLC including upregulated miRNAs have also 

been cited such as: miR-22 and miR-654-3p. According to Xu et al. (2015), miR-34b and miR-

520h take part in the coordination of NSCLC, miR-22 is an oncogene biomarker, and miR-654-

3p prohibits NSCLC progression while miR-448 promotes NSCLC progression. More 

upregulated miRNAs present in NSCLC include: miR-141, miR-193b, miR-200b, miR-301, let-

7g, miR-331, miR-331, miR-758, miR-744, miR-106a, miR-19a, miR-17, miR-19b, miR-93, 

miR-20b, miR-106b, miR-215, miR-25, miR-200c, and miR-24. According to Nadal et al. 

(2015), miR-141, miR-200b, miR-193b, and miR-301 all of which were upregulated in NSCLC 

and were distinguished as novel serum biological markers for lung malignancy detection.  

miRNAs are also prognostic markers for lung cancer. High-expression of miR-155, miR-

21, miR-106a, miR-93 and low-expression of let-7a-2, let-7b, miR-145 are associated with 

unfavorable outcomes of adenocarcinoma patients (Shen & Jiang, 2012). Low levels of miR-1 

and miR-499 and high levels of miR-486 and miR-30d are associated with unfavorable 

prognosis. miR-145 is a predictive biomarker for lung adenocarcinoma. miR-200b, miR-30c-1, 

miR-510, miR-630, miR-657 predict lung cancer recurrence. miR-221 and miR-222 are related 
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to aggressive NSCLC while miR-374a is associated with poor patient survival in early-stage 

NSCLC (Shen & Jiang, 2012). 

There are experimentally targeted miRNAs that regulate many pathways responsible for 

repression of E- cadherin, cytoskeleton rearrangement, and focal adhesion and stress fibers all 

leading to the spread of lung cancer (Figure 8) (L. Jiang & Qiu, 2013). Involved pathways 

include JAK/STAT, MAPK pathway, Wnt signaling pathway, and Notch Signaling pathway. 

miRNAs that are known to regulate invasion and metastasis in lung cancer (Figure 9) (L. Jiang & 

Qiu, 2013). miR-125a-5p, miR-21, and miR-378 lead to the spread of lung cancer to the brain, 

liver, and bone (L. Jiang & Qiu, 2013). miR-126, miR-30a, miR-206, miR-200, miR-200c, and 

miR125a-3p suppress the spread of lung cancer (L. Jiang & Qiu, 2013). The invasive lung cancer 

phenotype may be addressed by the regulation of the following miRNAs: miR-125b, miR-210, 

miR-103, miR-194, and miR-500 (L. Jiang & Qiu, 2013). 
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Figure 8. Experimentally validated miRNAs and their target pathways involved in invasion 
and metastasis.  
The micro RNAs (miRNAs) target many pathways responsible for repression of E- cadherin, 
cytoskeleton rearrangement, and focal adhesion and stress fibers all leading invasion and 
metastasis of lung cancer. Involved pathways include JAK/STAT, MAPK pathway, Wnt signaling 
pathway, and Notch Signaling pathway (L. Jiang & Qiu, 2013). Figure was reproduced with 
permission from reference 23; see appendix. EMT: Epithelial- Mesenchymal Transition PI3K: 
Phosphoionositide-3-Kinase, EGF: Epidermal Growth Factor, IGF: Insulin-like Growth Factor, 
TGF: Transforming Growth Factor, ECM: Extracellular Matrix, RTK: Receptor Tyrosine 
Kinase 
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Figure 9. miRNAs known to regulate invasion and metastasis in lung cancer.  
miR-125a-5p, miR-21, and miR-378 lead to the invasion and metastasis of lung cancer to the 
brain, liver, and bone. miR-126, miR-30a, miR-206, miR-200, miR-200c, and miR125a-3p inhibit 
the invasion and metastasis of lung cancer. The invasive lung cancer phenotype may be 
addressed by the regulation of the following miRNAs: miR-125b, miR-210, miR-103, miR-194, 
and miR-500 (L. Jiang & Qiu, 2013). Figure was reproduced with permission from reference 23; 
see appendix. 

1.2.2. lncRNAs 

The study of lncRNAs in the molecular biology field is relatively new. lncRNAs have 

become more important in understanding the biology of cancer and the paradigm of gene 

regulation. lncRNAs are functional RNA molecules that bypass translation and regulate gene 

function. lncRNAs are composed of 200 base pairs or greater and were discovered using histone 

modifications; lncRNAs are a class of non-coding RNAs (ncRNAs) which were once thought to 

be “junk” in human genome. Many lncRNAs have been identified but only a few have been 

functionally annotated. More studies on lncRNAs are being carried out to define lncRNA 

regulatory pathways. It has also been studied that lncRNA expression differs between tissues 

types and disease conditions. For example, lncRNA expression differ between normal tissue and 
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NSCLC tissue; lncRNA expression also differs between adenocarcinoma and squamous cell 

carcinoma which are subtypes of NSCLC. This regulatory factor is promising for cancer 

diagnosis and prognosis and introduces RNA-based therapy (J. Yang et al., 2014). 

1.2.2a. lncRNA categorization based on target location 

lncRNAs can be categorized into two categories based on the location of the genomic 

target: cis and trans acting lncRNAs. If the genomic target is located close to the site of synthesis 

and regulates nearby genes, this is known as cis-acting lncRNAs. On the other hand, trans-acting 

lncRNA has a genomic target located far from the site of synthesis and acts to regulate gene 

expressions that are farther away, on different chromosomes, or on homologous chromosomes 

(Vance & Ponting, 2014).   

1.2.2b. lncRNA categorization based on transcription site 

lncRNAs can be differentiated according to the location of transcription. lncRNAs can be 

transcribed from different regions: intronic, intergenic, sense, antisense, and bidirectional regions 

(Figure 10). lncRNAs transcribed from the introns of coding genes are called intronic lncRNAs 

also known as lintronic RNAs (J. Chen, Wang, Zhang, & Chen, 2014). lncRNAs induced from in 

between two coding genes are called intergenic lncRNAs (J. Chen, Wang, Zhang, & Chen, 

2014). Sense lncRNAs are transcripts from the same sequence as the coding gene and lncRNAs 

from the opposite gene coding sequence are called antisense lncRNAs (J. Chen, Wang, Zhang, & 

Chen, 2014). Bidirectional lncRNAs or divergent lncRNAs are transcripts that begin at the start 

of another coding gene (Zhao & Lin, 2015). 
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Figure 10. lncRNAs transcribed from different regions.  
Long non-coding RNAs (lncRNAs) can be transcribed from in between two coding genes, from 
introns of coding genes, from the same gene coding sequence, from the opposite gene coding 
sequence, from the beginning of another coding gene known as intergenic lncRNA, intronic 
lncRNA, sense lncRNA, antisense lncRNA, and divergent lncRNA respectively (Zhao & Lin, 
2015). Figure was reproduced with permission from reference 58; see appendix. 

1.2.2b. lncRNA Functions 

lncRNAs play a role in chromatin regulation, transcription regulation, and post-

transcriptional regulation; they also play an important role in tumorigenesis. lncRNAs functions 

range from a molecular level to a cellular level. lncRNAs serve many functions such as a 

transcriptional activator, a transcriptional repressor, a transcriptional guide, and a scaffold for 

chromatin modification complex. In addition to transcriptional and epigenetic control, lncRNAs 

are involved in post-transcriptional regulation, like miRNAs. Studies reveal interactions between 

miRNAs and lncRNAs suggesting a role play in cancer diagnosis and prognosis (G. Yang et al., 

2014). Much like miRNAs, lncRNAs were thought to be information deficient. Like miRNAs, 

lncRNAs regulate transcription and therefore regulate gene expression but the impact of gene 

regulation by lncRNAs is not yet understood. The similarities between these regulatory factors 

can be important in understanding disease progression and developing cancer therapies. 
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lncRNAs can also act as decoys and signals. A lncRNA that functions as a decoy binds to the 

protein and removes them from chromatin. A lncRNA that functions as a scaffold allows for 

subunits to assemble and work together. A lncRNA that functions as a guide binds to the protein 

and targets the gene to regulate gene expression. A lncRNA that function as signals send signals 

to distinguish gene expression (J. Chen, Wang, Zhang, & Chen, 2014). Furthermore, lncRNAs 

can act as flexible scaffold for chromatin- modifying complexes, enhancer RNAs, tumor 

suppressing signalers, RNA processors, RNA-RNA inter-actors, and miRNA sequesters. For 

example, MEG3 is noted as a tumor suppressor as it is downregulated in cancer cell lines and 

when overexposed prevents proliferation of the cancer cells in hepatocellular carcinoma 

(Prensner & Chinnaiyan, 2011). Further understanding of how lncRNAs function is important in 

understanding molecular disease progression thus leading to advanced mechanistic targeting of 

the disease. 
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Figure 11. lncRNAs have various functions.  
Long non-coding RNAs (lncRNAs) could act as decoys, scaffolds, guides, or signals. A lncRNA 
that functions as a decoy binds to the protein and removes them from chromatin. A lncRNA that 
functions as a scaffold allows for subunits to assemble and work together. A lncRNA that 
functions as a guide binds to the protein and targets the gene to regulate gene expression. A 
lncRNA that function as signals send signals to distinguish gene expression (J. Chen, Wang, 
Zhang, & Chen, 2014). Figure was reproduced with permission from reference 8; see appendix. 
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1.2.2c. Examples of lncRNAs in NSCLC 

Much like miRNAs, lncRNAs have also been found in cancer. MALAT1, H19, GAS5, 

PVT1, and HOTAIR are among the few lncRNAs found in lung cancer. Like miRNAs, lncRNAs 

have been associated with oncogenic and tumor suppressor activities. H19 is highly expressed in 

lung carcinomas, upregulated by Myc and hypoxic conditions, and functions as an oncogene in 

tumorigenesis. MALAT1 is also an oncogene and is highly expressed in lung cancers. H19 

function as oncogenes while GAS5 acts a tumor suppressor. BANCR is a known lncRNA and is 

under-expressed in NSCLC in tumor tissues and takes part in melanoma cell migration (G. Yang 

et al., 2014). Many other lncRNAs have been found such as CAR10, RGMBAS1, GHSROS, 

NKX2-AS1, BCYRN1, DLX6-AS1, SOX2-OT, CARLo-5, Lnc_bc060912, MVIH, HNF1A-

AS1, CCAT2, LUADT1, ZXF1, ANRIL, SCALI, NRG1, GAS6-AS1, LOC788228, DQ786227, 

PANDAR, MEG3, SPRY4-IT1, and AK126698. Many of these lncRNAs function to promote 

cell proliferation, migration, and metastasis. Some of these lncRNAs function to induce 

apoptosis and suppress cell proliferation (Wei & Zhou, 2016).  

There are known lncRNAs in NSCLC that are correlated to specific functions. CCAT2, 

HOTAIR, BANCR, AK126698, MALAT1, GAS6-AS1, and MEG3 are NSCLC-associated 

lncRNAs (Figure 12). CCAT2 and AK126698 are involved in pathways that result in invasion 

and metastasis. AK12669 may also be applied as a potential target for reversing NSCLC 

cisplatin resistance (J. Chen, Wang, Zhang, & Chen, 2014). MALAT1, GAS6-AS1, and MEG3 

are involved in different pathways that lead to invasion and metastasis. MALAT1 acts as a 

potential diagnostic and prognostic marker for NSCLC. MEG3 not only acts a tumor suppressor 

but acts as potential therapeutic target for NSCLC. HOTAIR is involved in pathway leading to 

apoptosis and G0/G1 cell cycle regulations. HOTAIR also act as a potential chemotherapy target. 
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BANCR is involved in pathways leading to epithelial mesenchymal transition (EMT) (J. Chen, 

Wang, Zhang, & Chen, 2014). 

 

Figure 12. Known lncRNAs in NSCLC and their functions.  
CCAT2, HOTAIR, BANCR, AK126698, MALAT1, GAS6-AS1, and MEG3 are NSCLC-associated 
lncRNAs. CCAT2 and AK126698 are involved in pathways that result in invasion and metastasis. 
MALAT1, GAS6-AS1, and MEG3 are involved in different pathways that lead to invasion and 
metastasis. HOTAIR is involved in pathway leading to apoptosis and G0/G1 cell cycle 
regulations. BANCR is involved in pathways leading to epithelial mesenchymal transition (J. 
Chen, Wang, Zhang, & Chen, 2014). Figure was reproduced with permission from reference 8; 
see appendix. 
 

1.3. Microarray Analysis 

 In biology, genes are studied in many different ways including experimental and 

computational approaches. In this study, a microarray was used for gene expression analysis. A 

microarray is a 2D chip that harbors thousands of bound DNA sequences to its surface. Target 
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DNA sequences hybridize to the surface that is also probed with complementary DNA 

sequences. There are three types of microarray: spotted arrays on glass, self-assembled arrays, 

and in situ synthesized arrays (Bumgarner, 2013). Microarrays are assembled in a way to allow 

for gene expression analysis. First, RNA is extracted from isolated cells of interest and enriched 

for mRNA. The enriched mRNA is reverse transcribed into cDNA and the samples are 

fluorescently labeled. These labeled samples hybridize to the microarray plate and the plate is 

scanned to measure hybridization and in turn gene expression. Microarrays are not only used for 

gene expression analysis but they are also used for transcription factor binding analysis, and 

genotyping; they have been widely used to study single nucleotide polymorphisms. Given the 

vast array of functions a microarray contributes to, microarrays comprise of some limitations. 

Microarrays are not a direct measurement of DNA or RNA at high or low concentration, hence 

the signal is not linearly proportional. Microarrays can only detect nucleic acid sequences that 

are probed on the microarray plate therefore not contributing to the discovery of novel genes. 

Microarrays remain advantageous in allowing for gene regulation analysis (Bumgarner, 2013). 

 Microarray analysis of NSCLC can lead to the understanding of regulatory pathways. 

Many regulatory pathways are involved in NSCLC including the STAT3 signaling pathway, 

Hedgehog signaling pathway, Ras pathway, and TGF-B pathway (Brambilla & Gazdar, 2009). 

These regulatory pathways function in cell proliferation, invasion, angiogenesis, metastasis, and 

resistance to apoptosis (Brambilla & Gazdar, 2009). Therefore, studying the genes involved in 

these pathways as well as the regulatory factors of these genes like miRNAs and lncRNAs is 

important for targeting tumor pathogenesis and honing therapeutic strategies. 
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CHAPTER 2: Hypothesis and Objectives 

 
 
Hypothesis: 
Variable gene expression was observed due to the different sample characteristics of NSCLC. 
NSCLC in this study is further examined according to regulatory factors. Molecular factors such 
as lncRNAs and miRNAs are fundamental in the interplay of gene regulation in order to ensure 
cellular homeostasis. 

In this study, it is hypothesized that: miRNAs, lncRNAs, and differentially expressed genes in 
NSCLC may have a biological relationship which further recommends molecular target 
experiments. 

Objective 1: 
 
To identify biologically and statistically significant differentially expressed genes in non-small 
cell lung cancer patient samples and non-small cell lung cancer patient samples with normal 
lungs 
 
Objective 2: 
 
To identify miRNAs and lncRNAs that target the aforementioned identified differentially 
expressed genes 
 
Objective 3: 
 
To propose regulatory networks that include the found miRNAs and lncRNAs that target the 
differentially expressed genes 
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CHAPTER 3: Materials and Methods 

3.1. Dataset 

The dataset selection criteria included sample size, sample type, recent studies, and 

median centered values.  The  dataset chosen corresponds to the molecular pathology article 

authored by Kadara et al., 2013, from the Journal of the National Cancer Institute (JNCI) titled 

“Transcriptomic Architecture of the Adjacent Airway Field Cancerization in Non-Small Cell 

Lung Cancer” . The dataset selected contains 226 total samples consisting of NSCLC tumor lung 

tissue samples, NSCLC normal lung tissue samples, and NSCLC airway samples. Two groups 

from the chosen dataset were obtained: NSCLC tumor lung tissue samples vs. NSCLC normal 

lung tissue samples.  

3.2. Software  

The microarray samples were obtained from the Gene Expression Omnibus (GEO) 

dataset database and the gene expression profiles were downloaded. GEO is a user-friendly 

database allowing users to search for datasets in published sources as well as allowing users to 

access and download the corresponding data. Once the dataset was downloaded, RStudio was 

used to process the microarray data samples, an open source used for statistical computations and 

graphics; it is a front-end interface allowing for easy data input, analysis, and visualization. Once 

the differentially expressed genes were manually paired with miRNAs and lncRNAs, each list 

was filtered, and uploaded into Cytoscape v3.4.0. Cytoscape is also an open source used for 

network visualization. The differentially expressed genes’ list was uploaded into Database for 

Annotation, Visualization and Integrated Discovery (DAVID 6.8) for functional annotation. 
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3.3. Databases  

GeneCards was used to perform functional annotation of the differentially expressed 

genes as well as to find the miRNAs that target the respective gene. miRTarBase is an 

experimentally verified miRNA target interaction database. miRTarBase was used to pair 

miRNAs that target the differentially expressed genes. NONCODE is a database that annotates 

lncRNAs. NONCODE was used to manually pair the differentially expressed genes with 

lncRNAs. starBase v2.0 is a lncRNA database used to make miRNA-lncRNA target interactions. 

starBase v2.0 was used to create miRNA-lncRNA target interactions. Target Explorer powered 

by Ingenuity is an online database used to convey biological content through providing 

interaction networks and biological pathways and relationships. Target Explorer was used to 

suggest relationships between miRNAs, lncRNAs, and differentially expressed genes. 

Table 1. Table of open source databases used in this study. 
This table contains a list of open source databases used in this study as well as their respective 
references. 

Database Reference 

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/ 

GeneCards http://www.genecards.org/ 

miRTarBase http://mirtarbase.mbc.nctu.edu.tw/ 

NONCODE2016 http://noncode.org/index.php 

starBase v2.0 http://starbase.sysu.edu.cn/ 

Target Explorer-Ingenuity https://targetexplorer.ingenuity.com/index.htm 

DAVID 6.8 https://david.ncifcrf.gov/ 
. 
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Figure 13. Schematic overview of online databases used in this study. 
This overview shows the open source and validated online databases used in this computational 
study. 
 
3.4. Samples 

Samples were retrieved and downloaded from GEO using the following accession 

number: GSE44077. This dataset included 226 total samples comprising a 986.1 Mb file. This 

dataset included 110 NSCLC samples and 116 NSCLC airway samples. Of the 226 samples, 110 

NSCLC samples were chosen for this study. Selection criteria for the samples was based on the 

location profile of the sample; different location profiles of this dataset included matched 

NSCLC tumors and airway epithelia with varying distances from the tumor. In this study, only 

matched NSCLC tumors were studied. The raw expression data were in .CEL format. Further 

processing was done for the downloaded samples. The samples were corrected and normalized 

using Robust Multi-Array Average (RMA) and transformed using log base 2 in order to reveal 

the values of the expression data to allow for further analysis of the differentially expressed 

genes.  

3.5. Sample Characteristics 

This study contained matched samples from NSCLC patients. The two groups studied 

include:  55 samples from NSCLC patients and 55 samples from NSCLC patients with normal 
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lungs. NSCLC patients may have adjacent lung tissue to the tumor that appears normal at an 

early diagnosis stage or the adjacent normal lung tissue may not have been effected by radiation 

or other treatments (American Cancer Society). The remaining samples from the dataset include: 

lung cancer patients’ samples and airway samples which are irrelevant to this study. 

3.6. Sample Processing 

The samples were processed using R version 3.3.2. The data was uploaded in .txt format 

and named DATA. Csv. This file contains all the samples including the NSCLC samples (n=55) 

and NSCLC with normal lungs’ (n=55) samples.  The NSCLC samples correspond to 

GSM1077844,GSM1077846,GSM1077848,GSM1077853,GSM1077855,GSM1077857,GSM10

77864,GSM1077866,GSM1077868,GSM1077873,GSM1077875,GSM1077877,GSM1077892,G

SM1077895,GSM1077896,GSM1077902,GSM1077904,GSM1077906,GSM1077911,GSM1077

913,GSM1077915,GSM1077922,GSM1077924,GSM1077926,GSM1077933,GSM1077935,GS

M1077937,GSM1077944,GSM1077946,GSM1077948,GSM1077952,GSM1077954,GSM10779

56,GSM1077963,GSM1077965,GSM1077967,GSM1077973,GSM1077981,GSM1077984,GSM

1077985,GSM1077991,GSM1077993,GSM1077995,GSM1078001,GSM1078003,GSM107800

5,GSM1078010,GSM1078016,GSM1078018,GSM1078020,GSM1078027,GSM1078029,GSM1

078031,GSM1078061,GSM1078063. The NSCLC with normal lungs’ samples correspond to 

GSM1077845,GSM1077847,GSM1077849,GSM1077854,GSM1077856,GSM1077858,GSM10

77865,GSM1077867,GSM1077869,GSM1077874,GSM1077876,GSM1077878,GSM1077893,G

SM1077894,GSM1077903,GSM1077905,GSM1077907,GSM1077912,GSM1077914,GSM1077

916,GSM1077923,GSM1077925,GSM1077927,GSM1077934,GSM1077936,GSM1077938,GS

M1077945,GSM1077947,GSM1077949,GSM1077953,GSM1077955,GSM1077957,GSM10779

64,GSM1077966,GSM1077968,GSM1077974,GSM1077975,GSM1077976,GSM1077982,GSM
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1077983,GSM1077986,GSM1077992,GSM1077994,GSM1077996,GSM1078002,GSM107800

4,GSM1078006,GSM1078011,GSM1078012,GSM1078017,GSM1078019,GSM1078021,GSM1

078028,GSM1078030,GSM1078032. This data was saved for further processing. 

3.7. Sample Processing: Differential Expression of Genes 

A log2 histogram was created to visualize the distribution of the expression value means 

of the samples. The values on the extremes of the plot represent the differentially expressed 

genes. A box plot was created to determine if the NSCLC samples and the normal samples are 

comparable. Box plots are used to compare different variables of a group of data samples in 

order to show a trend among the dataset. This means that a boxplot shows distribution values for 

selected samples for a dataset; a box plot specifically shows if the values selected are median 

centered.  A centered configuration of the median line indicates samples are fit for comparison. 

A cluster dendogram was created to group the samples according to similar characteristics. 

Cluster dendograms group samples based on correlation coefficients of the expression values. 

This illustrates the samples in nodes and branches. A scatter plot was created to visualize the 

relationship between the two groups of samples: NSCLC patients and NSCLC patients with 

normal lungs. Points that lay farther from the red line represent the differentially expressed 

genes. Biological and statistical significance were defined using a fold cut-off value = 2 and a p-

value = 0.01, respectively. A volcano plot was produced to present the biological (fold cut-off 

value) and statistical significance (p-value) in one graph. The fold cut-off correlates to the 

difference between the means of the conditions, the differences between the differentiated genes 

and the undifferentiated genes. The larger the fold cut-off the more significant the data. The p-

value correlates to the likelihood of finding significance by chance. In other words, defining a 

low p-value means that the significance is not by chance. A heatmap was also produced to 
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visualize the level of expression of the hierarchically clustered differentially expressed genes; red 

represents the over-expressed genes and blue represents the under-expressed genes. 

 The differentially expressed genes were manually inputted into GeneCards to perform 

functional annotation. The differentially expressed genes were also manually paired with 

miRNAs using miRTarBase. The miRNAs were filtered using literature associated with NSCLC 

as well as choosing miRNAs that have a strong evidence validation method (i.e. reporter assay, 

western blot, and qPCR). The differentially expressed genes were also manually paired with 

lncRNAs using NONCODE. The lncRNAs were filtered using literature associated with 

NSCLC. 

3.8. Systems Approach 

Filtered miRNAs and their matched differentially expressed genes were organized into a 

table and uploaded into Cytoscape version 3.4.0. The table was created into a text file and used 

to link the filtered miRNAs to the differentially expressed genes to create a gene regulatory 

network. A network was created to visualize the manually paired miRNAs with their respective 

differentially expressed genes. 

lncRNA associated with NSCLC were paired with the filtered miRNAs using starBase 

v2.0, organized into a table, and uploaded into Cytoscape. The table was also created into a text 

file used to link the filtered miRNAs to already NSCLC-associated lncRNAs to create a 

regulatory network. Another regulatory network was created to connect the filtered miRNAs and 

the differentially expressed genes from this dataset to the NSCLC-associated lncRNAs. Another 

table was created that included the filtered miRNAs, their associated differentially expressed 

genes, and their associated NSCLC-associated lncRNAs, converted into a text file, and uploaded 
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into Cytoscape. This network was created to visualize connections between the filtered miRNAs, 

NSCLC-associated lncRNAs, and differentially expressed genes. 

All of the differentially expressed genes were uploaded with the official gene symbol into 

DAVID 6.8 in a list format and were functionally annotated. DAVID clustered the genes based 

on similarly related genes into functionally related groups. This was used for further 

interpretation. 

 Target Explorer was used to provide more comprehensive results. Selected differentially 

expressed gene symbols, miRNAs, and lncRNAs were entered into this online biomedical toolkit 

to determine biological relationships. These biological relationships were used to suggest 

regulatory relationships between miRNAs, lncRNAs, and differentially expressed genes. It 

helped confirm regulatory targets and suggest other biological functions. This will also help 

suggest further molecular target experiments. 

Figure 14. Schematic overview of study design. 
This study design shows the steps taken to create regulatory networks that connect differentially 
expressed genes, miRNAs, and NSCLC-associated lncRNAs in NSCLC. 
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CHAPTER 4: Results 

4.1. Data Validation and Quality Check for Samples in this Study 
 

The 110 NSCLC samples in this study were obtained from GEO with the following 

accession number GSE44077 (Figure 15). A log2 histogram, box plot, and cluster dendogram 

were created for sample analysis and quality assurance of results. In addition, a scatter plot, 

volcano plot, and heatmap were created in order to allow for further analysis. Differentially 

expressed genes were identified and used to create gene regulatory networks to their respective 

miRNAs and lncRNAs.  

 

Figure 15. Flowchart of samples chosen from GEO (GSE44077). 
A total of 226 samples were acquired from GSE44077. 55 NSCLC patient samples and 55 
NSCLC patients with normal lung tissue samples were chosen for this study and further 
analyzed. The remaining samples from the dataset include: lung cancer patients’ samples and 
airway samples which are irrelevant to this study. 
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4.1.1. Testing for Data Distribution of Samples 
 
Expression data from different data sets were collected. The data were first pre-processed 

to allow for appropriate comparison. First, the expression values were log-2 transformed then the 

distribution of the log-2 transformed data was examined. The log2 transformed histogram of the 

data was produced to check the behavior of the data and to visualize the distribution of the 

expression value means. The advantage of taking the log2 allows the user to compare the 

expression value means and take the ratio between the means. The distribution of the expression 

values in the log2 histogram is not evenly distributed nor symmetric (Figure 16). The log2 

transformation of this dataset skews the bell curve formation of the histogram to the left. The left 

tail of the histogram suggests differentially expressed genes that are under-expressed and the 

right tail of the histogram suggest differentially expressed genes that are over-expressed. In this 

study, most of the differentially expressed genes appear to be over-expressed. This was later  

confirmed with the volcano plot (Figure 20). 
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Figure 16. Log2 histogram of the NSCLC and normal lung tissue samples.  
The distribution of the expression values is not evenly distributed nor is it symmetric. The 
histogram is bell-shaped curved and skewed to the left. The left tail of the histogram suggests 
differentially expressed genes that are under-expressed and the right tail of the histogram 
suggest differentially expressed gene that are over-expressed in NSCLC and normal lung tissue 
samples. This Figure was produced by RStudio using DATA.csv. 

4.1.2. Testing for Data Uniformity of Samples 
 
All the green box plots represent the normal lung tissue samples from this dataset and all 

the red box plots represent the NSCLC samples from this dataset. This box plot shows an almost 

even distribution of values which suggests that these samples are fit for comparison (Figure 17). 
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Figure 17. Box plot of the NSCLC and normal lung tissue samples. 
The green box plots represent the normal lung tissue samples from the GSE44077 dataset and all 
the red box plots represent the NSCLC samples from this dataset. An almost even distribution of 
median values is observed among the samples deeming the samples fit for comparison. This 
Figure was produced by RStudio using DATA.csv.  
 

4.1.3. Classifying Samples by Cluster Analysis 
 
The hierarchical clustering shows that the characteristically related samples were grouped 

together. All the NSCLC and normal lung tissue samples were grouped together except for three 

NSCLC samples; these three NSCLC samples were also grouped together (Figure 18). There 

were two major clusters present: NSCLC and NSCLC normal lung samples. A third cluster was 

also present that represented three NSCLC samples; this remote cluster may be a result of a 

misdiagnosis or mislabeling. 
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Figure 18. Cluster Dendogram of the NSCLC and normal lung tissue samples.  
All the NSCLC and normal lung tissue samples were grouped together except for three NSCLC 
samples; these three NSCLC samples were also grouped together. All characteristically similar 
samples were grouped together. This Figure was produced by RStudio using DATA.csv. 
 
4.2. Identification of Biologically and Statistically Significant Differentially Expressed 
Genes 

4.2.1. Genomic Expression Levels Between NSCLC and Normal Lung Samples 
 
The scatter plot produced shows the relationship between two variables (Figure 19). The 

relationship between the NSCLC samples and the NSCLC normal lung samples is roughly linear 

(Figure 19). The majority of the data samples have similar genomic correlations which is 

indicated by the overlap of data points. Each gene has a specific expression value denoted by an 

individual data point.  Data points closer to the line indicate similar gene expression. Data points 

above the line are over-expressed and data points below the line are under-expressed. The 

outliers on the scatter plot, lie further from the line and indicate variable expression differences 
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in the data. In this study these data points represented the differentially expressed genes and the 

differentially expressed genes were further analyzed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Scatter Plot showing gene expression between NSCLC patients and NSCLC 
patients with normal lungs.  
Scatter plot of the NSCLC cancerous lung samples and the NSCLC normal lung samples was 
illustrated by RStudio using DATA.csv. The relationship is roughly linear. Overlap of data points 
indicate similar gene expression. Data points above the line are over-expressed and data points 
below the line are under-expressed. 

4.2.2. Determining Biologically and Statistically Significant Differentially Expressed 
Genes 
 
A common approach in bioinformatics analysis of microarray is to combine statistical 

analysis with negative-log expression ratios. A typical visualization tool for this two-dimensional 

analysis is the volcano plot (Figure 20). The volcano plot measures the fold cut-off, biological 
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significance, on the x-axis and the p-value, statistical significance, on the y-axis. The more 

statistically significant data appear higher in the graph and the upregulated data and the 

downregulated data appear to the left and right side of the graph, respectively. More specifically, 

data points to the right of the red line and above the green line represent statistically and 

biologically significant upregulated differentially expressed genes. Data points to the left of the 

blue line and above the green line represent statistically and biologically downregulated 

differentially expressed genes. Applying such analysis to our dataset resulted in 108 

differentially expressed genes, of which 105 are known genes of biological and statistical 

significance in this dataset; two genes lack significant found similarities and one gene is of 

unknown function.  Most of the differentially expressed genes in this study are upregulated 

(Figure 20). Figure 20 also reiterates the findings in Figure 16.  
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Figure 20. Volcano Plot demonstrating the relationship between NSCLC patients and NSCLC 
patients with normal lungs. 
The volcano plot shows a relationship between the biological (fold cut-off =2) and statistical (p-
value=0.01) significance in one graph. Genes below the horizontal green line are considered not 
significant. Genes to the right of red line are upregulated and genes to the left of the blue line 
are downregulated.  Genes of interest lie in the upper right sector and the upper left sector. 108 
differentially expressed genes were identified and most of these genes are upregulated. This 
Figure was illustrated by RStudio using DATA.csv. 

 
4.2.3. Visualizing Expression Patterns of Differentially Expressed Genes 

 
Hierarchical clustering of the differentially expressed genes (n=108) resulted into 2 

clusters and the samples (n=110) into 3 clusters as previously determined from Figure 18 (Figure 

21). This heat map showed expression values of the differentially expressed genes in the 

different NSCLC sample type. The over-expressed genes are depicted in red and the under-

expressed genes are depicted in blue. The identified differentially expressed genes that are over-

expressed in cancer samples are under-expressed in normal samples.  
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Figure 21. Heatmap exhibiting expression pattern of identified differentially expressed genes.  
The heatmap hierarchically clusters the differentially expressed genes (n=108) and the samples 
(n=110). Red represents the over-expressed genes and blue represents the under-expressed 
genes. The differentially expressed genes are labeled on the y-axis and divided into 2 clusters 
and the samples are labeled on the x-axis and divided into 3 clusters. Samples are outlined in 
columns and the differentially expressed genes are depicted in rows. This Figure was illustrated 
by RStudio using DATA.csv. 

4.2.4. Functional Annotation of Differentially Expressed Genes of Biological and 
Statistical Significance 
 
There were a total of 33,252 genes in this dataset, but only 108 differentially expressed 

genes of biological and statistical significance were identified (Table 2). They were further 
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analyzed using online databases to create regulatory networks to connect miRNAs, NSCLC-

associated lncRNAs, and differentially expressed genes.  

Table 2. Table of differentially expressed genes identified.  
The 108 differentially expressed genes (DEGs) are listed and annotated with their respective 
Affymetrix gene ID and their respective official gene symbol. There are 105 known differentially 
expressed genes, 2 genes that lack significant hits., 1 unknown gene. 
AFFYMETRIX_ID Name Gene_Symbol 

8055323 
NCK associated protein 5 

NCKAP5 
8099524 LIM domain binding 2 

LDB2 
7917649 Transforming growth factor beta receptor 3 

TGFBR3 
8095886 C-X-C motif chemokine ligand 13 

CXCL13 
8056518 Sodium voltage-gated channel alpha subunit 7 

SCN7A 
8133876 CD36 molecule 

CD36 
8145047 Surfactant protein C 

SFTPC 
8094301 Slit guidance ligand 2 

SLIT2 

7932407 
ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 6 

ST8SIA6 
7971444 Carboxypeptidase B2 

CPB2 
7972157 Endothelin receptor type B 

EDNRB 
8064904 Fermitin family member 1 

FERMT1 
7932254 Integrin subunit alpha 8 

ITGA8 

8091385 Ceruloplasmin 
CP 

8082928 Claudin 18 
CLDN18 

7907271 Flavin containing monooxygenase 2 
FMO2 
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8156571 Chromosome 9 open reading frame 3 
C9orf3 

8044225 Sulfotransferase family 1C member 4 
SULT1C4 

7979307 DLG associated protein 5 
DLGAP5 

8113666 Semaphorin 6A 
SEMA6A 

8122176 Transcription factor 21 
TCF21 

8147891 
Polycystic kidney and hepatic disease 1 
autosomal recessive-like 1 

PKHD1L1 
7985741 ATP/GTP binding protein like 1 

AGBL1 
7934898 Ankyrin repeat domain 22 

ANKRD22 
8103789 Glycoprotein M6A 

GPM6A 
8127502 Long intergenic non-protein coding RNA 472 

LINC00472 
8058591 Acyl-CoA dehydrogenase, long chain 

ACADL 
7933855 Rhotekin 2 

RTKN2 
8013341 Microfibrillar associated protein 4 

MFAP4 
7944164 Transmembrane protease, serine 4 

TMPRSS4 
8044021 Interleukin 1 receptor like 1 

IL1RL1 
8013989 Solute carrier family 6 member 4 

SLC6A4 

8029693 
FosB proto-oncogene, AP-1 transcription factor 
subunit 

FOSB 
7914075 Ficolin 3 

FCN3 
8016841 Transmembrane protein 100 

TMEM100 
8114964 Serine peptidase inhibitor, Kazal type 1 

SPINK1 
8082597 Collagen type VI alpha 6 chain 

COL6A6 
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8126729 Chloride intracellular channel 5 
CLIC5 

8057797 Serum deprivation response 
SDPR 

8179967 
Advanced glycosylation end-product specific 
receptor 

AGER 

8125341 
Advanced glycosylation end-product specific 
receptor 

AGER 

8178771 
Advanced glycosylation end-product specific 
receptor 

AGER 
8017885 ATP binding cassette subfamily A member 8 

ABCA8 
8096301 Secreted phosphoprotein 1 

SPP1 

7901256 
Cytochrome P450 family 4 subfamily B 
member 1 

CYP4B1 
8141094 Pyruvate dehydrogenase kinase 4 

PDK4 
8132318 Anillin actin binding protein 

ANLN 
7946033 Hemoglobin subunit beta 

HBB 
8077499 Long intergenic non-protein coding RNA 312 

LINC00312 
8097628 Hedgehog interacting protein 

HHIP 
7940654 Secretoglobin family 1A member 1 

SCGB1A1 
7951297 Matrix metallopeptidase 12 

MMP12 
7996819 Cadherin 3 

CDH3 
8138363 Sclerostin domain containing 1 

SOSTDC1 

8029086 
Carcinoembryonic antigen related cell adhesion 
molecule 5 

CEACAM5 
7996264 Cadherin 5 

CDH5 
8144917 Lipoprotein lipase 

LPL 
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7964722 WNT inhibitory factor 1 
WIF1 

8132092 INMT-FAM188B readthrough 
NMD candidate 

8116780 Desmoplakin 
DSP 

8067140 
Cytochrome P450 family 24 subfamily A 
member 1 

CYP24A1 
8171427 PIR-FIGF readthrough 

PIR-FIGF 
7981732 Immunoglobulin heavy variable 4-31 

IGHV4-31 
8145317 ADAM like decysin 1 

ADAMDEC1 
8117395 Histone cluster 1 H2B family member f 

HIST1H2BF 
8091537 Immunoglobulin superfamily member 10 

IGSF10 
7964872 Protein tyrosine phosphatase, receptor type B 

PTPRB 
8151532 Fatty acid binding protein 4 

FABP4 
8079060 Vasoactive intestinal peptide receptor 1 

VIPR1 
8154692 TEK receptor tyrosine kinase 

TEK 
7983890 Myocardial zonula adherens protein 

MYZAP 
8007420 Amine oxidase, copper containing 3 

AOC3 
8052753 Gastrokine 2 

GKN2 

7946323 
Olfactory receptor family 5 subfamily P 
member 2 

OR5P2 

8109383 
Glutamate ionotropic receptor AMPA type 
subunit 1 

GRIA1 
8135594 Caveolin 1 

CAV1 
8098060 Relaxin/insulin like family peptide receptor 1 

RXFP1 
8122334 Atypical chemokine receptor 4 

ACKR4 
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8057578 Calcitonin receptor like receptor 
CALCRL 

8065412 Cystatin SN 
CST1 

7960464 Von Willebrand factor 
VWF 

7917199 Tubulin tyrosine ligase like 7 
TTLL7 

8155754 MAM domain containing 2 
MAMDC2 

7946579 
Lymphatic vessel endothelial hyaluronan 
receptor 1 

LYVE1 
7951217 Matrix metallopeptidase 7 

MMP7 
8121181 Four and a half LIM domains 5 

FHL5 
7951271 Matrix metallopeptidase 1 

MMP1 
7991762 Hemoglobin subunit alpha 1 

HBA1 
7991766 Hemoglobin subunit alpha 1 

HBA1 

7919139 
Ankyrin repeat domain 20 family member A12, 
pseudogene 

ANKRD20A12P 

7919146 
Ankyrin repeat domain 20 family member A12, 
pseudogene 

ANKRD20A12P 
8014974 Topoisomerase DNA II alpha 

TOP2A 
7934979 Ankyrin repeat domain 1 

ANKRD1 
8101957 Endomucin 

EMCN 
8043468 Immunoglobulin kappa constant 

IGKC 
8043436 Immunoglobulin kappa constant 

IGKC 
8043449 Immunoglobulin kappa constant 

IGKC 
8083494 Membrane metalloendopeptidase 

MME 
8101881 

Alcohol dehydrogenase 1B class 1, beta ADH1B 
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polypeptide 

7902565 Adhesion G protein-coupled receptor L2 
ADGRL2 

8170119 Four and a half LIM domains 1 
FHL1 

7965110 Noncoding transcript identified by NONCODE 
NONHSAT029647 

7924069 RNA, U5A small nuclear 8, pseudogene 
RNU5A-8P 

8043441 
Immunoglobulin Kappa Variable 1D-27, 
pseudogene 

IGKV1D-27 
7999384 Noncoding transcript identified by NONCODE 

NONHSAT140505 

7986637 
Immunoglobulin Heavy Variable 1/OR15-1, 
nonfunctional 

IGHV1OR15-1 
8043470 Immunoglobulin Kappa Variable 3D-11 

IGKV3D-11 
8173924 Unknown noncoding sequence 

Unknown 
 
4.3. Systems Approach: Creating Regulatory Networks 

4.3.1. Connecting Differentially Expressed Genes and miRNAs via Interaction 
Networks 

 
Six hundred eighty-one miRNAs were matched to the differentially expressed genes. The 

miRNAs were filtered according to literature and miRTarBase’s strong evidence validation 

methods (reporter assay, western blot, and qPCR). The filtration narrowed the original list to 66 

miRNAs (Table 3). The regulatory network created in Cytoscape shows many overlapping 

connections between the miRNAs and the differentially expressed genes and indicates a many-

to-many systemic analysis relationship (Figure 22). This network was constructed on Cytoscape 

and exhibits the filtered miRNAs that are known to target these differentially expressed genes.  
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Figure 22. Regulatory network of miRNAs and differentially expressed genes.  
This network shows many overlapping and many-to-many relationships, specifically, it shows the miRNAs that target the differentially 
expressed genes (DEGs). Table 3 represents the annotations in this interaction network. Table 3 below was uploaded into Cytoscape 
in .csv format and Cytoscape was used to create this network. The colors and sizes of the circles and the lines do not have significant 
meaning. 

DEGs 

miRNAs 
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Table 3. Table of filtered regulatory miRNAs paired with DEGs.  
This table annotates 66 of the 681 miRNAs and their respective differentially expressed gene 
target from this dataset. These miRNAs were filtered based on literature and miRTarBase’s 
strong validation methods (i.e. reporter assay, western blot, qPCR). 
miRNA Gene Symbol 

mir-223-5p HHIP, ADH1B 

mir-25-3p MYZAP 

miR-654-3p CYP24A1 

miR-520h CAV1, SLC6A4 

miR-34b ADH1B, CAV1, ACADL 

miR-200b HHIP 

miR-138-5p LPL, FABP4, EMCN 

miR-503-5p ANLN, TMEM100 

miR-503-3p LYVE1 

miR-145-5p MMP1, MMP12 

miR-222-5p MMP1 

miR-367-3p MYZAP 

mir-18a-3p LPHN2 

mir-19a PTPRB 

mir-20a SLC6A4, CAV1, TMEM100 

mir-19b-3p NCKAP5, LPHN2, PTPRB 

miR-21 TGFBR3, TOP2A, TCF21 

miR-106a-5p SCL6A4, TMEM100, CAV1 

miR-146a SPP1 

miR-155-5p HHIP, CD36, LPL 

miR-192-5p 
CAV1, RTKN2, DLGAP5, FERMT1, CYP24A1, GRIA1, ALNL, 
ABCA8 

miR-203a-3p CAV1, MMP1, TOP2A 

miR-210a-5p SCN7A 

miR-9-5p DSP, CDH3 

miR-708-5p TOP2A 

miR-375 ANKRD1 

miR-126a-3p TEK, MMP7 

miR-126a-5p MMP7, AOC3, TMEM100 
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miR-30d-3p SULT1C4 

miR-30d-5p SEMA6A 

miR-129-5p EMCN, SEMA6A 

miR-128-3p TGFBR3, CDH5 

miR-30b-3p ACADL, INMT 

mir-30b-5p SEMA6A 

miR-30c-5p SEMA6A 

miR-30c-1-3p ACADL, INMT 

miR-30c-2-3p INMT, ACADL 

miR-520c-3p DLGAP5, SLC6A4, TMEM100 

miR-520e DLGAP5, SLC6A4, TMEM100 

miR-520b DLGAP5, SLC6A4, TMEM100 

miR-520d-3p DLGAP5, SLC6A4, TMEM100 

miR-520a-3p DLGAP5, SLC6A4, TMEM100 

miR-520h CAV1, SLC6A4 

miR-520g-3p CAV1, SLC6A4 

miR-520d-5p TOP2A 

miR-17-5p TMEM100, GPM6A, CAV1, SLC6A4 

miR-200a-5p HHIP 

miR-106b-5p SLC6A4, TMEM100, GPM6A, CAV1 

miR-193-5p SLC6A4, TMEM100, CAV1 

miR-193-3p SCN7A 

miR-20b-5p SLC6A4, TMEM100, CAV1 

miR-224-5p FOSB 

let-7e-5p DSP, TGFBR3 

miR-221-5p CLIC5 

miR-221-3p LPHN2 

let-7a-5p TGFBR3 

miR-27a-3p SEMA6A, TGFBR3 

miR-10b-5p HHIP, RTKN2 

miR-1254 CD36 

miR-574-5p HHIP, TTLL7 

miR-24-3p INMT, TTLL7 
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miR-199a-5p CAV1 

miR-660-3p CAV1, CLIC5 

miR-92a-3p TTLL7, HBB, MYZAP 

 
miR-30a-3p SULT1C4 

miR-30a-5p SEMA6A 

 
 4.3.2. Connecting NSCLC-associated lncRNAs and miRNAs via Interaction 
Networks 
 

The NSCLC-associate lncRNAs include: MALAT1, PVT1, HOTAIR, H19, TUG1, 

GAS5, and DLX6-AS1. These 7 lncRNAs were chosen from literature (Table 4) (Wei & Zhou, 

2016). Most of these NSCLC-associated lncRNAs are oncogenes (Wei & Zhou, 2016). 

MALAT1, PVT1, HOTAIR, H19, and DLX6-AS1 are associated with oncogene functions. 

GAS5 and TUG1 are associated with tumor suppressor functions. This network shows many 

overlapping and many-to-many relationships between the filtered miRNAs and NSCLC-

associated lncRNAs (Figure 23).  
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Figure 23. Regulatory network of NSCLC-associated lncRNAs and miRNAs. 
This network shows many overlapping and many-to-many relationships specifically it shows the NSCLC- associated long non-coding 
RNAs (lncRNAs) that are known to target miRNAs. Table 4 represents the annotations in this interaction network. Table 4 below was 
uploaded into Cytoscape in .csv format and Cytoscape was used to create this network. The colors and sizes of the circles and the 
lines do not have significant meaning. 
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miRNAs 
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Table 4. Table of miRNA and lncRNA targets.  
These seven long non-coding RNAs (lncRNAs) are associated with NSCLC according to 
literature (Wei & Zhou, 2016). These already NSCLC associated-lncRNAs were paired with 
miRNA targets already found in this dataset using the online starBase database. 
lncRNA 
associated 
with 
NSCLC miRNA  

MALAT1 

miR-200b, miR-30c-5p, miR-129-5p, miR-708-5p, miR-17-5p, miR-20a-5p, miR-203a, 
miR-155-5p, miR-367-3p, miR-145- 5p, miR-146a, miR-30a-5p, miR-25-3p, miR-106b-
5p, miR-30b-5p, miR-30d-5p, miR-20b-5p, miR-106a-5p, miR-503-5p, miR-224-5p 

H19 
miR-17-5p, miR-19a, miR-20a, miR-19b-3p, miR-138-5p, miR-193, miR-106b-5p, miR-
20b-5p, miR-106a-5p 

TUG1 miR-9-5p, miR-138-5p, miR-145-5p, miR-221-3p 

HOTAIR 
miR-17-5p, miR-19a, miR-20a, miR-19-3p, miR-106b-5p, miR-221-3p, miR-20b-5p, 
miR-106a-5p 

GAS5 miR-128-3p, miR-221-3p 

PVT1 
miR-17-5p, miR-20a, miR-203a-3p, miR-24-3p, miR-128-3p, miR-106b-5p, miR-20b-
5p, miR-106a-5p 

DLX6-AS1 miR-199a-5p 

 
 4.3.3. Connecting Differentially Expressed Genes, miRNAs, and NSCLC-associated 
lncRNAs via Interaction Networks 
 

The regulatory network created shows many overlapping interactive connections between 

the miRNAs, NSCLC-associated lncRNAs, and differentially expressed genes (Figure 24). 

Figure 24, also indicates many-to-many relationship which combines are reiterates findings from 

Figure 22 and Figure 23. These many-to-many systemic analysis relationships observed in 

Figure 22, Figure 23, and Figure 24 means that these differentially expressed genes, miRNAs, 

and lncRNAs are intertwined and may be involved in NSCLC regulation. These overlapping 

interactions were further analyzed using Target Explorer. 
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Figure 24. Regulatory network of miRNAs, NSCLC-associated lncRNAs, and differentially expressed genes.  
The program used to create the network of NSCLC-associated lncRNAs, miRNAs, and differentially expressed genes (DEGs). This 
network shows many overlapping and many-to-many relationships. Table 5 represents the annotations in this interaction network. 
Table 5 below was uploaded into Cytoscape in .csv format and Cytoscape was used to create this network. The colors and sizes of the 
circles and the lines do not have significant meaning. 
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Table 5. Table of lncRNA, miRNA, and DEG targets.  
This table annotates the 66 miRNAs with their respective identified differentially expressed gene 
(DEG) target from this dataset. The 66 miRNAs are also annotated with their respective NSCLC- 
associated lncRNAs targets. 
lncRNA miRNA Gene Symbol 
no matches found mir-223-5p HHIP, ADH1B 
MALAT1 mir-25-3p MYZAP 
no matches found miR-654-3p CYP24A1 
no matches found miR-520h  CAV1, SLC6A4 
no matches found miR-34b  ADH1B, CAV1, ACADL 
MALAT1 miR-200b HHIP 
H19, TUG1 miR-138-5p LPL, FABP4, EMCN 
MALAT1 miR-503-5p ANLN, TMEM100 
no matches found miR-503-3p LYVE1 
TUG1, MALAT1 miR-145-5p MMP1, MMP12 
no matches found miR-222-5p MMP1 
MALAT1 miR-367-3p MYZAP 
no matches found mir-18a-3p LPHN2 
HOTAIR, H19 mir-19a PTPRB 
HOTAIR, H19, 
MALAT1, PVT1 mir-20a SLC6A4, CAV1, TMEM100 
H19, HOTAIR mir-19b-3p NCKAP5, LPHN2, PTPRB 
TUG1 miR-21 TGFBR3, TOP2A, TCF21 
H19, HOTAIR, 
MALAT1, PVT1 miR-106a-5p SCL6A4, TMEM100, CAV1 
MALAT1 miR-146a SPP1 
MALAT1 miR-155-5p HHIP, CD36, LPL 

other lncRNAs found miR-192-5p 
CAV1, RTKN2, DLGAP5, FERMT1, CYP24A1, 
GRIA1, ALNL, ABCA8 

MALAT1, PVT1 miR-203a-3p CAV1, MMP1, TOP2A 
LINC00473 miR-210a-5p SCN7A 
TUG1 miR-9-5p DSP, CDH3 
MALAT1 miR-708-5p TOP2A 
no matches found miR-375 ANKRD1 
other lncRNAs found miR-126a-3p TEK, MMP7 
no matches found miR-126a-5p MMP7, AOC3, TMEM100 
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no matches found miR-30d-3p SULT1C4 
MALAT1 miR-30d-5p SEMA6A 
MALAT1 miR-129-5p EMCN, SEMA6A 
GAS5, PVT1 miR-128-3p TGFBR3, CDH5 
no matches found miR-30b-3p ACADL, INMT 
MALAT1 mir-30b-5p SEMA6A 
MALAT1 miR-30c-5p SEMA6A 
no matches found miR-30c-1-3p ACADL, INMT 
no matches found miR-30c-2-3p INMT, ACADL 
MALAT1 miR-520c-3p DLGAP5, SLC6A4, TMEM100 
MALAT1 miR-520e DLGAP5, SLC6A4, TMEM100 
MALAT1 miR-520b DLGAP5, SLC6A4, TMEM100 
MALAT1 miR-520d-3p DLGAP5, SLC6A4, TMEM100 
MALAT1 miR-520a-3p DLGAP5, SLC6A4, TMEM100 
no matches found miR-520h  CAV1, SLC6A4 
no matches found miR-520g-3p CAV1, SLC6A4 
no matches found miR-520d-5p TOP2A 
H19, MALAT1, 
HOTAIR, PVT1 miR-17-5p TMEM100, GPM6A, CAV1, SLC6A4 
no matches found miR-200a-5p HHIP 
H19, HOTAIR, 
MALAT1, PVT1 miR-106b-5p SLC6A4, TMEM100, GPM6A, CAV1 
no matches found miR-193-5p SLC6A4, TMEM100, CAV1 
H19 miR-193-3p SCN7A 
H19, HOTAIR, 
MALAT1, PVT1 miR-20b-5p SLC6A4, TMEM100, CAV1 
MALAT1 miR-224-5p FOSB 
other lncRNAs found let-7e-5p DSP, TGFBR3 
no matches found miR-221-5p CLIC5 
GAS5, HOTAIR, TUG1 miR-221-3p LPHN2 
other lncRNAs found let-7a-5p TGFBR3 
no matches found miR-27a-3p SEMA6A, TGFBR3 
other lncRNAs found miR-10b-5p HHIP, RTKN2 
no matches found miR-1254 CD36 
no matches found miR-574-5p HHIP, TTLL7 
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PVT1 miR-24-3p INMT, TTLL7 
DLX6-AS1 miR-199a-5p CAV1 
no matches found miR-660-3p CAV1, CLIC5 
MALAT1 miR-92a-3p TTLL7, HBB, MYZAP 
no matches found miR-30a-3p SULT1C4 
MALAT1 miR-30a-5p SEMA6A 
 

4.4. Differentially Expressed Genes: DAVID Functional Annotation 
 

According to DAVID, the differentially expressed genes were functionally annotated. 

DAVID functionally annotated the differentially expressed genes into 19 clusters in order of 

highest to lowest enrichment scores. This means that DAVID classified the genes into 19 gene 

functional groups. The enrichment score ranks the gene clusters in order of biological 

significance. The primary cluster has an enrichment score of 9.71 and the genes are related to 

signaling and secretion (Figure 25). The highly common annotations of the first gene cluster 

includes: signal, glycoprotein, glycosylation site N-linked, signal peptide, and disulfide bond 

annotations. The second cluster has an enrichment score of 2.83 and the genes are related to 

immune response and immunoglobulins (Figure 25). The highly common annotations of the 

second gene cluster includes: immunoglobulin-fold, immunoglobulin-domain, immunoglobulin 

subtype, antigen binding, serine-type endopeptidase activity, gamma receptor pathway signaling 

pathway involved in phagocytosis, and complement activation classical pathway annotations.   

The third cluster has an enrichment score of 2.36 and the genes are related to the cell 

membrane (Figure 26). The highly common annotations of the third gene cluster includes: 

membrane, transmembrane, transmembrane helix, transmembrane region, integral component of 

membrane, cell membrane, topological domain cytoplasmic, plasma membrane, and topological 

domain extracellular annotations. 
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Figure 25. DAVID Gene Functional Annotation Clustering: Cluster 1 &2 of 19. 
DAVID functionally clustered the uploaded list of 108 differentially expressed genes (DEGs) into 
19 clusters. The most biologically significant cluster is associated with signaling and secretion 
and has an enrichment score of 9.71. The second most biologically significant cluster is 
associated with immune response and immunoglobulins and has an enrichment score of 2.83. 

 

Figure 26. DAVID Gene Functioning Annotation Clustering: Cluster 3 of 19. 
The third most biologically significant cluster DAVID identified is associated with the cell 
membrane and has an enrichment score of 2.36. 
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DAVID also allowed for the differentially expressed genes to be categorized. Categories 

included cancer, lung disease or lung cancer, lung function, and NSCLC. These categories and 

the corresponding associated differentially expressed genes are presented in Table 6. Some of the 

differentially expressed genes overlap between the categories.  

Table 6. Table of categorized DEGs.  
This table presents the categorized differentially expressed genes (DEGs). AGER, LPL, 
SCGB1A, CAV1, GKN2, CYP24A1, MMP1, MMP7 and MMP12 are overlapping between the 
categories. 
Category Genes 
Cancer CD36, ST8SAI6, WIF1, AGER, ADH1B, ANKRD1, CDH3, CPB2, 

CAV1, CYP24A1, CYP4B1, EDNRB, FMO2, FHL5, GKN2, GRIA1, 
IL1RL1, LPL, MMP1, MMP12, MMP7, MME, MFAP4, SPP1, 
SCGB1A1, SPINK1, SLIT2, SLC6A4, TOP2A, TGFBR3, VWF 

Lung Disease or Lung 
Cancer 

AGER, CAV1, CYP24A1, HHIP, GKN2, LPL, MMP1, MMP12, 
MMP7, SCGB1A1, SFTPC 

Lung Function CP, MMP1, MMP12 
NSCLC AGER, MMP1, MMP12, MMP7 

 

 

 

Figure 27. Schematic overview of study results. 
This overview summarizes this study’s results of connecting differentially expressed genes, 
miRNAs, and NSCLC-associated lncRNAs in NSCLC. 
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CHAPTER 5: Discussion and Conclusion 

5.1. Regulatory Networks: Connecting Differentially Expressed Genes, miRNAs, and 
NSCLC-associated lncRNAs 
 

TGFBR3, CAV1, and HHIP were further analyzed. All of these differentially expressed 

genes were extracted from our samples and are related to cancer or lung cancer. Using miRNAs 

from this dataset and NSCLC associated-lncRNAs potential regulatory networks were created to 

show an interplay between the regulatory factors and differentially expressed genes. 

5.1.1. Regulatory Network: Connecting TGFBR3, GAS5, miR-21, miR-128 

TGFBR3 is a differentially expressed gene in this dataset in which miR-21 targets 

TGFBR3 (miRTarBase). miR-128 targets TGFBR3 but it also targets GAS5 

(miRTarBase)(starBase). According to Wei et al.,, GAS5 is a known lncRNA that is associated 

with NSCLC; GAS5 was not found in this dataset when DEGs were manually paired to 

lncRNAs. GAS5 is also known to target miR-21(starBase). GAS5 and TGFBR3 function as 

tumor suppressors. In cancer conditions, miR-21 is upregulated and miR-128 is downregulated 

(Jiang et al., 2010) (Liang et al., 2016).  TGFBR3 and GAS5 are also downregulated in cancer 

(Jiang et al., 2010; Liang et al., 2016). Thus, it appears that miR-21 suppresses TGFBR3 

expression and miR-128 also appears to induce TGFBR3 expression (Figure 28). Hence, miR-

128 appears to induce GAS5 expression and in turn GAS5 appears to suppress miR-21 

expression (Figure 28). 

miR-21 and miR-128 are from the filtered miRNAs in this dataset. miR-128 targeting is 

supported by next generation sequencing (less strong evidence). According to Hu et al., miR-128 

plays a role in NSCLC tumorigenesis, angiogenesis, and lymph-angiogenesis (Hu et al., 2014). 

Hu et al. also demonstrates that miR-128 is downregulated in non-small cell lung cancer tissues 
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and acts a tumor suppressor. Recent studies also show, miR-128 also targets TGFBR3 

confirming that there is crosstalk between miRNAs and TGF-B signaling (Hu et al., 2014). 

According to miRTarBase, miR-21 targeting is supported by more strong evidence (reporter 

assay, qPCR). Previous studies show that miR-21 targets TGFBR3, a player in a key tumor 

suppressor pathway, TGF-B, and that TGFBR3, a membrane proteoglycan, is under-expressed in 

NSCLC (Papagiannakopoulos, Shapiro, & Kosik, 2008). TGF-B pathway is known to promote 

tumor suppressor effects (Butz, Rácz, Hunyady, & Patócs, 2012). Previous studies have 

confirmed with strong evidence (RT-qPCR) that GAS5 represses miR-21 expression but the 

study also shows the negative relationship between miR-21 and GAS5 meaning that mir-21 also 

suppresses the expression of GAS5. Both miR-21 and GAS5 regulate each other (Zhang et al., 

2013). This double-sided relationship strengthens the fact that miRNAs and lncRNAs regulate 

cellular processes. In the case of NSCLC, this study suggests that the under-expression of GAS5 

suppresses miR-21 which suppresses expression of TGFBR3 leading to tumor growth and 

metastasis. Finger et al. further validates this point by showing that the under-expression of 

TGFBR3 leads to increase in cell migration, invasion, and anchorage independent growth of lung 

cancer cells (Finger et al., 2008). Furthermore, GAS5 has been determined as a novel biomarker 

for the diagnosis of non-small cell lung cancer (Liang et al., 2016). Recently, miR-21 has also 

been coined a novel therapeutic target in lung cancer (Markou, 2016). This further proves the 

potential of miRNAs and lncRNA to regulate cancer development which emphasizes the 

importance of creating these regulatory network relationships. These regulatory network 

relationships can lead to novel biomarkers and therapeutic targets for cancer diagnosis and 

progression.  
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Figure 28. Regulatory Network Interplay Between TGFBR3, miR-21, miR-128, and GAS5.  
In cancer, TGFBR3, miR-128, and GAS5 are downregulated while miR-21 is upregulated 
NSCLC (Jiang et al., 2010) (Liang et al., 2016). miR-21 and miR-128 target TGFBR3 while 
GAS5 targets miR-21 and miR-128 targets GAS5 (Papagiannakopoulos, Shapiro, & Kosik, 2008) 
(Hu et al., 2014) (Zhang et al., 2013). Thus, this suggests that miR-128 induces GAS5 
expression. It also appears that GAS5 suppresses miR-21 expression and in turn it appears that 
miR-21 suppresses TGFBR3 expression. It also appears that miR-128 induces TGFBR3 
expression. 
 

5.1.2. Regulatory Network: Connecting HHIP, MALAT1, miR-200b, miR-155-5p 
 

HHIP is a differentially expressed gene in this dataset in which miR-200b targets HHIP. 

miR-155-5p targets HHIP but it also targets MALAT1 (miRTarBase)(starBase). According to 

Wei et al., MALAT1 is a known lncRNA that is associated with NSCLC; MALAT1 was also not 

found in this dataset when DEGs were manually paired to lncRNAs. MALAT1 is also known to 

target miR-200b (starBase). MALAT1 functions as and oncogene while HHIP functions as a 

tumor suppressor. In cancer conditions, miR-200b and miR-155-5p are upregulated (Zhou et al., 

2013). HHIP is downregulated in lung cancer (Huang et al., 2011). MALAT1 is also upregulated 
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in cancer (Wei & Zhou, 2016). Thus, it appears that miR-200b suppresses HHIP expression and 

miR-155-5p also appears to suppress HHIP expression (Figure 29). Hence, miR-200b appears to 

induce MALAT1 expression and in turn MALAT1 appears to induce miR-155-5p expression 

(Figure 29). 

MALAT1 functions by regulating gene expression and not by regulating alternative 

splicing in turn influencing lung cancer metastasis (Gutschner et al., 2013). In the case of 

NSCLC, this study suggests that the over-expression of MALAT1 induces the expression of 

miR-200b which suppresses the expression of HHIP leading to lung cancer cell metastasis. HHIP 

has been associated with Chronic Obstructive Pulmonary Disease (COPD) but the pathogenesis 

of COPD by HHIP remains unclear. Studies suggest that HHIP influences COPD via the 

hedgehog signaling pathway, a pathway important for carcinogenesis. Zhou et al., performed 

functional annotation analysis of significant gene expression values between COPD and normal 

lung tissues; this analysis demonstrated a relationship with extracellular matrix and cell growth 

genes (Zhou et al., 2013). 

DAVID was used for further analysis of extracellular matrix genes. MMP1, MMP7, and 

MMP12 are extracellular matrix genes found in this dataset. According to DAVID, MMP1 is 

functionally associated with a rate of decline of lung function in Chronic Obstructive Pulmonary 

Disease and is associated with an increased risk for lung cancer. Polymorphisms in MMP1 and 

MMP12 are related to smoking-related lung injury (R. Zhang, He, Yang, Lu, & Liu, 2005). 

Over-expression of MMP1 is associated with NSCLC and lymphatic metastasis of NSCLC (UN 

et al., 2004). MMP1 and MMP7 are over-expressed in lung microenvironment and distinguish 

pulmonary fibrosis from lung diseases (Rosas et al., 2008). MMP1 may also be associated with 

lung cancer development (Gouyer et al., 2005). MMP1 is upregulated by substance P to promote 
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collagen degradation in lung fibroblasts (Ramos et al., 2007). MMP1 and MMP12 play a role in 

lung structural changes leading to development of emphysema (Joos et al., 2002). MMP1 

promoter is demonstrated to be a direct target of cigarette smoke in lung epithelial cells (Mercer, 

Wallace, Brinckerhoff, & D'Armiento, 2009). This reiterates the findings of Zhou et al. and 

further proves the relationship of extracellular genes with COPD or development and regulation 

of lung cancer. 

 

Figure 29. Regulatory Network Interplay Between HHIP, miR-155-5p, miR-200b, and 
MALAT1.  
In cancer, miR-155-5p, miR-200b, and MALAT1 are over-expressed and HHIP is under-
expressed (Huang et al., 2011) (Wei & Zhou, 2016). miR-200b and miR-155-5p target HHIP 
(Zhou et al., 2013). According to starBase, miR-200b targets MALAT1 and MALAT1 targets 
miR-155-5p. Thus, this suggests that miR-200b induces MALAT1 expression. In turn it appears 
that MALAT1 induces miR-155-5p expression which appears to result in miR-155-5p 
suppressing HHIP expression. It also appears that miR-200b suppresses HHIP expression. 

5.1.3. Regulatory Network: Connecting CAV1, PVT1, miR-20b-5p, miR-17-5p 
 

CAV1 is a differentially expressed gene in this dataset in which miR-20b-5p targets 
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CAV1 (miRTarBase). miR-17-5p targets CAV1 but it also targets PVT1 

(miRTarBase)(starBase). According to Wei et al., PVT1 is a known lncRNA that is associated 

with NSCLC; PVT1 was not found in this dataset when DEGs were manually paired to 

lncRNAs. PVT1 is also known to target miR-20b-5p (miRTarBase). PVT1 and CAV1 function 

as oncogenes (Wei & Zhou, 2016). The tumor suppressor function of CAV1 depends on the 

tissue type and the stage of the tumor; CAV1 is known to act as both a tumor suppressor and an 

oncogene (Sunaga et al., 2004). In cancer conditions, miR-20b-5p is downregulated and miR-17-

5p is upregulated (Mogilyansky & Rigoutsos, 2013).  CAV1 and PVT1 are also upregulated in 

NSCLC cancer. Thus, it appears that miR-20b-5p induces CAV1 expression and miR-17-5p also 

appears to induce CAV1 expression (Figure 30). Hence, miR-17-5p appears to induce PVT1 

expression and in turn PVT1 appears to induce miR-20b-5p expression (Figure 30). 

PVT1 has been defined as a biomarker and therapeutic target for NSCLC (Y.-R. Yang et 

al., 2014). PVT1, a 1716 nucleotide lncRNA, is a known oncogene and works to promote 

NSCLC cell proliferation through large tumor suppressor kinase 2 (LATS2) expression (Wan et 

al., 2016). In the case of NSCLC, this study suggests that the over-expression of PVT1 

suppresses miR-20b-5p which suppresses CAV1 expression. CAV1, an oncogene, plays a role in 

tumor spreading, growth factor signaling, matrix remodeling, cell to cell adhesion, and 

angiogenesis. CAV1 is also known to interact with membrane metalloproteases (MMP) like 

MMP1, MMP7, and MMP12. MMPs function to control tumor invasion and metastasis by 

degrading extracellular matrix proteins. CAV1 remodels the extracellular membrane by 

interacting with MMPs leading to cancer cell migration and metastasis (Senetta et al., 2013).  
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Figure 30. Regulatory Network Interplay Between CAV1, miR-17-5p, miR-20b-5p, and PVT1. 
In NSCLC, CAV1, miR-17-5p, and PVT1 are over-expressed and miR-20b-5p is under-expressed 
(Wei & Zhou, 2016) (Mogilyansky & Rigoutsos, 2013). According to miRTarBase, miR-17-5p 
and miR-20b-5p target CAV1. PVT1 targets miR-20b-5p and miR-17-5p targets PVT1. Thus, this 
suggests that miR-17-5p induces PVT1 expression and in turn it appears that PVT1 suppresses 
miR-20b-5p expression which in turn appears to result in miR-20b-5p suppressing CAV1 
expression. On the other hand, it also appears that miR-17-5p induces CAV1 expression.  
 

Not only is miR-20b-5p downregulated but so is miR-106a-5p and miR-203a-3p which 

are suppressed by PVT1 and in turn suppresses CAV1 expression (Wei & Zhou, 2016). This 

suggests that miR-17-5p induces PVT1 expression and in turn PVT1 suppresses miR-20b-5p, 

miR-106a-5p, and miR-203a-3p expression which in turn results in the aforementioned miRNAs 

suppressing CAV1 expression (Figure 31).  
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Figure 31. Regulatory Network Interplay Between CAV1, miR-17-5p, miR-20b-5p, miR-203a-
3p, miR-106a-5p, and PVT1.  
According to miRTarBase, miR-20b-5p, miR-106a-5p, and miR-203a-3p target CAV1. In 
NSCLC, not only is miR-20b-5p downregulated but so is miR-106a-5p and miR-203a-3p which 
appear to be suppressed by PVT1. In turn, it also appears that miR-106a-5p and miR-203a-3p 
suppress CAV1 expression (Shen & Jiang, 2012). This suggests similar biological relationships 
as in Figure 30. 
 

In NSCLC, miR-17-5p, miR-106b-5p, and miR-20a-5p target CAV1 (miRTarBase). Not 

only is miR-17-5p upregulated but so is miR-106b-5p and miR-20a-5p which induces CAV1 

expression (Shen & Jiang, 2012). This suggests that miR-17-5p, miR-106b-5p, miR-20a-5p 

induce CAV1 expression but also induce PVT1 expression and in turn PVT1 suppresses miR-

20b-5p, miR-106a-5p, and miR-203a-3p expression which in turn results in the aforementioned 

miRNAs suppressing CAV1 expression (Figure 32).  

Experimental validation of these proposed computational interactions will contribute to 

the roadmap for lung cancer diagnosis and therapy. 
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Figure 32. Regulatory Network Interplay Between CAV1, miR-17-5p, miR-106b-5p, miR-20a-
5p, miR-20b-5p, and PVT1.  
According to miRTarBase, miR-17-5p, miR-106b-5p, and miR-20a-5p target CAV1. In NSCLC, 
not only is miR-17-5p upregulated but so is miR-106b-5p and miR-20a-5p which appear to 
induce CAV1 expression (Shen & Jiang, 2012). This suggests similar biological relationships as 
in Figure 30. 
 
 The fold cut-off and p-value are harsh filters and this may present a problem with 

extracting the intended samples from this dataset. An unfiltered heatmap may be produced to 

validate the number of extracted samples from the volcano plot. Also, the number of samples in 

this study may be a limitation. In the future, computational studies patterns can be validated with 

other datasets and compared with RNA-sequencing datasets.  

 
 
5.2. Conclusion 

 miRNAs and lncRNAs are fundamental molecular factors that regulate gene expression 

to ensure cellular homeostasis in NSCLC and in normal lungs. In this study the aim was to 

suggest a biological relationship and to further recommend molecular target experiments to 

further connect differentially expressed genes, miRNAs, and lncRNAs. It is clear that miRNAs 

and lncRNAs play regulatory mechanisms in controlling NSCLC and it is also clear that there 
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are a plethora of miRNA and lncRNA interactions that lead to this regulation. It is also clear that 

there are connections between differentially expressed genes, miRNAs, and NSCLC-associated 

lncRNAs. The suggested regulatory networks in this study reinforce this notion.  However, what 

is not clear is how the miRNAs, lncRNAs, and differentially expressed genes work together to 

regulate cellular homeostasis.  

Tumor suppressor genes like TGFBR3 and HHIP show a connection between 

extracellular matrix genes which are functionally known and related to carcinogenesis (Finger et 

al., 2008 and Zhou et al., 2013). CAV1, an oncogene, displays a relationship between growth 

factor signaling and matrix remodeling all leading to tumor growth and cancer cell metastasis 

(Senetta et al., 2013). MALAT1, PVT1, and GAS5 are lncRNAs that regulate gene expression 

via miRNA targeting. These networks propose mechanisms of actions to further study miRNAs 

and lncRNAs suggesting a crosstalk between miRNAs, lncRNAs, and differentially expressed 

genes. Because miRNAs and lncRNAs have proven to play important roles in cellular regulation 

as well as cancer progression the regulation of these regulatory pathways can lead to novel 

approaches in cancer therapy.  
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CHAPTER 6: Future Directions 

 
A better knowledge of the regulatory pathway is important for understanding tumor 

pathogenesis. In the present study, the aim was to analyze regulatory gene factors in order to 

suggest connections between differentially expressed genes, miRNAs, and lncRNAs. These 

factors were computationally studied and suggested. Future studies are needed to validate or 

revoke these connections with complementary experimental research. Confirming these 

suggested relationships will not only provide insight to the pathogenesis of cancer, but will also 

hone therapeutic strategies. Future studies should accomplish the following objectives. 

Objective 1 

Experimentally validate the suggested regulatory networks. Experimentally determine 

whether miRNAs and lncRNAs together can influence differentially expressed genes. This will 

lead to a confirmed mechanism of action for NSCLC regulation. This can give insight into 

manipulating lung cancer progression and novel therapeutic methods. 

Objective 2 

  Identify more lncRNAs associated with NSCLC and determine their respective 

functions. This can contribute to clinical usefulness in cancer diagnosis, prognosis, and therapy. 

This crucial especially since lncRNAs are potential biomarker for early diagnosis of NSCLC. 

 Future studies should also expand on lncRNAs, as it is a new field in molecular biology. 

lncRNAs are a novel emerging field and require in-depth analysis including experimental 

identification and functional annotation of lncRNAs. This can contribute to online lncRNA 

databases for future computational analysis and will lead to a better understanding of cancer 

pathogenesis and treatment. 
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 Objective 3 

 Future studies should also include RNA sequencing data from NSCLC patients to not 

only identify the same patterns, but also validate the connections between differentially 

expressed genes, miRNAs, and lncRNAs. This will also lead to possible diagnostic targets and 

targeted treatment options for NSCLC patients which could lead to halting the progression of the 

disease. This will lead to a better mechanistic understanding of lung cancer regulation. 

 

  

 
Figure 33. Schematic overview of future directions.  
This overview summarizes the future directions for NSCLC diagnosis, prognosis, and therapy.  
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Figure A2. International Agency for Research on Cancer (IARC) grants permission to use 
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Figure A3. Permission to use Figure 4 and Figure 5 
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Figure A6. Permission to use Figure 8 and Figure 9 
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Figure A7. Permission to use Figure 10 
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Figure A8. Permission to use Figure 11 and Figure 12 
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